
Algebraic fractions 
You need to be able to manipulate algebraic fractions in the same way as numeric fractions. Here are three 
short examples: 
 

𝑥𝑥
𝑥𝑥 + 4 +

4
𝑥𝑥 − 1 =

𝑥𝑥(𝑥𝑥 − 1)
(𝑥𝑥 + 4)(𝑥𝑥 − 1) +

4(𝑥𝑥 + 4)
(𝑥𝑥 + 4)(𝑥𝑥 − 1) =

𝑥𝑥(𝑥𝑥 − 1) + 4(𝑥𝑥 + 4)
(𝑥𝑥 + 4)(𝑥𝑥 − 1) =

𝑥𝑥2 + 3𝑥𝑥 + 16
(𝑥𝑥 + 4)(𝑥𝑥 − 1) 

 
𝑥𝑥

𝑥𝑥 + 4 ×
4

𝑥𝑥 − 1 =
4𝑥𝑥

(𝑥𝑥 − 1)(𝑥𝑥 + 4) 

 
𝑥𝑥

𝑥𝑥 + 4 ÷
4

𝑥𝑥 − 1 =
𝑥𝑥

𝑥𝑥 + 4 ×
𝑥𝑥 − 1

4 =
𝑥𝑥(𝑥𝑥 − 1)
4(𝑥𝑥 + 4) 

 
 
Algebraic division 
In Chapter 7 of Pure Year 1, you learnt how to divide two polynomials. We will now look at how we can 
rewrite an improper fraction in terms of a proper fraction using algebraic division. 
 

If we have a fraction of the form 
𝐹𝐹(𝑥𝑥)
𝐺𝐺(𝑥𝑥)

, where 𝐹𝐹(𝑥𝑥) and 𝐺𝐺(𝑥𝑥) are polynomials, then we can say: 

 

 𝐹𝐹(𝑥𝑥)
𝐺𝐺(𝑥𝑥)

= 𝑄𝑄(𝑥𝑥) + 𝑟𝑟
𝐺𝐺(𝑥𝑥)

 , where 𝑄𝑄(𝑥𝑥) is the quotient and r is the remainder of 𝐹𝐹(𝑥𝑥) divided by 𝐺𝐺(𝑥𝑥). 

 
We can see why this is true by looking at a non-algebraic example to begin with. Take the fraction  
9
2
;  we can express  9

2
 as 4 + 1

2
, which is in the same form as the 𝑅𝑅𝑅𝑅𝑅𝑅 of the above relationship. 

Now let’s consider the algebraic fraction 𝑥𝑥
3+𝑥𝑥2−7
𝑥𝑥−3

. Using long division: 
 

 
 
 
 
 
 
 
 
 
∴ we can say that   𝑥𝑥

3+𝑥𝑥2−7
𝑥𝑥−3

= 𝑥𝑥2 + 4𝑥𝑥 + 12 + 29
𝑥𝑥−3

 using (*). This new expression has no improper 
fractions, so we have achieved our goal. 
   
Partial fractions 
A fraction with more than one linear factor in the denominator can be split up into separate fractions, 

which are known as partial fractions. For example, we can rewrite 
6𝑥𝑥2+5𝑥𝑥−2

𝑥𝑥(𝑥𝑥−1)(2𝑥𝑥+1)
 as  

𝐴𝐴
𝑥𝑥

+ 𝐵𝐵
𝑥𝑥−1

+ 𝐶𝐶
2𝑥𝑥+1

 for 

some constants 𝐴𝐴,𝐵𝐵 and 𝐶𝐶. Notice how the linear factors in the denominator of the original fraction are 
now separated into different fractions. 
 

 If you have an improper fraction, you must first perform long division and use the relationship (*) 
to attain an expression in terms of a proper fraction, before you can use partial fractions. 
 

 If you have a proper fraction, you can proceed to the partial fraction method straight away. 
 
When we say linear factor, we mean something of the form 𝑎𝑎𝑥𝑥 + 𝑏𝑏. Sometimes the denominator is not 
given in a linear factorised form. In such cases, you should try to find a factorisation if you want to split via 
partial fractions. For example: 
 

2
𝑥𝑥2 − 4 →

2
(𝑥𝑥 + 2)(𝑥𝑥 − 2)   𝑜𝑜𝑜𝑜 

2𝑥𝑥
𝑥𝑥2 + 9𝑥𝑥 + 18 →

2𝑥𝑥
(𝑥𝑥 + 6)(𝑥𝑥 + 3) 

 

 
 

Important definitions 
 

 A negation of a given statement is another statement that can be used to imply the 
given statement is incorrect. 

 
 A contradiction is an incompatibility between two statements. In other words, the 

two statements cannot both be true. 
 

 An improper fraction is one where the degree of the numerator is greater than or 

equal to the degree on the denominator. An example is  6𝑥𝑥
2+5𝑥𝑥

𝑥𝑥(𝑥𝑥−1)
, since the degree of 

the numerator (2) is equal to the degree of the denominator. Recall that the degree 
of the numerator/denominator is the highest power of 𝑥𝑥 present. 

 
 
Proof by contradiction 
Proof by contradiction is a powerful method used to prove statements and is applicable in 
many mathematical contexts. The idea is relatively simple: 
 

 We start by assuming the given statement is false. 
 We work to show that this assumption leads to a contradiction, either in the 

assumption we made or in a fact we know to be true. 
 
Here are some helpful facts to remember when proving statements by contradiction: 
 

 Any even number, n, can be written in the form 𝑛𝑛 = 2𝑘𝑘, for some integer k. 
 Any odd number, n, can be written in the form 𝑛𝑛 = 2𝑘𝑘 + 1, for some integer k. 
 Rational numbers can be written in the form 𝑎𝑎

𝑏𝑏
, where a and b are integers. 

 Irrational numbers cannot be written in the form 𝑎𝑎
𝑏𝑏

. 
 
 
We will now go through two key examples: 
 
Example 1: Prove by contradiction that there are infinitely many prime numbers. 
 
Assume there are a finite number of prime numbers. 
 
Let’s say there are n prime numbers  𝑝𝑝1,𝑝𝑝2,𝑝𝑝3, … ,𝑝𝑝𝑛𝑛. Now, consider the number 𝐾𝐾 =
𝑝𝑝1𝑝𝑝2𝑝𝑝3 … 𝑝𝑝𝑛𝑛 + 1. This new number leaves a remainder of 1 upon division by any of the prime 
numbers. This means that 𝐾𝐾 is not divisible by any of the prime numbers, which in turn 
implies that either 𝐾𝐾 is prime, or 𝐾𝐾 has a prime factor that is not listed! Either way, this is a 
contradiction in the assumption we took to be true. Therefore, there must be an infinite 
number of prime numbers. 
 
 
Example 2:  Prove by contradiction that there exist no integers a and b such that                          
                      21𝑎𝑎 + 14𝑏𝑏 = 1. 
 
Assume there are integers a and b such that 21𝑎𝑎 + 14𝑏𝑏 = 1. 
 
Dividing through by 7:   3𝑎𝑎 + 2𝑏𝑏 = 1

7
.  

We can already see a problem; we assumed a and b to be integers, so 3𝑎𝑎 + 2𝑏𝑏 must also be 
an integer. As a result, there is no possible way we could have 1

7
.on the 𝑅𝑅𝑅𝑅𝑅𝑅. This is a 

contradiction and so we can conclude there are no integers a and b such that that 21𝑎𝑎 +
14𝑏𝑏 = 1. Note that we choose to divide by 7 as it is a common divisor of 21 and 14. 
 
 
 
 

With the help of an example, we will go through each step of the partial fraction method. 
 

Example 3:  Split up 
6𝑥𝑥2+5𝑥𝑥−2

𝑥𝑥(𝑥𝑥−1)(2𝑥𝑥+1)
 using partial fractions.  

 

[1] We start by letting 
6𝑥𝑥2+5𝑥𝑥−2

𝑥𝑥(𝑥𝑥−1)(2𝑥𝑥+1)
≡ 𝐴𝐴

𝑥𝑥
+ 𝐵𝐵

𝑥𝑥−1
+ 𝐶𝐶

2𝑥𝑥+1
. 

 
[2]  Next, we manipulate the 𝑅𝑅𝑅𝑅𝑅𝑅 to make all the denominators the same: 
 

 6𝑥𝑥2+5𝑥𝑥−2
𝑥𝑥(𝑥𝑥−1)(2𝑥𝑥+1)

≡ 𝐴𝐴(𝑥𝑥−1)(2𝑥𝑥+1)
𝑥𝑥(𝑥𝑥−1)(2𝑥𝑥+1)

+ 𝐵𝐵(𝑥𝑥)(2𝑥𝑥+1)
𝑥𝑥(𝑥𝑥−1)(2𝑥𝑥+1)

+ 𝐶𝐶(𝑥𝑥)(𝑥𝑥−1)
𝑥𝑥(𝑥𝑥−1)(2𝑥𝑥+1)

 
 
[3] Now, we can equate the numerators: 
 
 6𝑥𝑥2 + 5𝑥𝑥 − 2 = 𝐴𝐴(𝑥𝑥 − 1)(2𝑥𝑥 + 1) + 𝐵𝐵(𝑥𝑥)(2𝑥𝑥 + 1) + 𝐶𝐶(𝑥𝑥)(𝑥𝑥 − 1) 
 
 We now try to find the constants 𝐴𝐴,𝐵𝐵 and 𝐶𝐶. To do so, we will use the substitution 

method.  
 

We can substitute 𝑥𝑥 = 1, 𝑥𝑥 = 0 into our equation. We choose these values of 𝑥𝑥 because 
this will result in cancellation of terms on the RHS.  

 
Substituting 𝑥𝑥 = 1:   ⇒ 6(1) + 5(1)− 2 = 𝐴𝐴(0) + 𝐵𝐵(1)(3) + 𝐶𝐶(0) 

⇒ 3𝐵𝐵 = 9 ∴ 𝐵𝐵 = 3  
Substituting 𝑥𝑥 = 0:   ⇒ 6(0) + 5(0)− 2 = 𝐴𝐴(−1)(1) + 𝐵𝐵(0) + 𝐶𝐶(0) 
   ⇒ −2 = −𝐴𝐴 ∴ 𝐴𝐴 = 2 
 
We now know 𝐴𝐴 and 𝐵𝐵 so all we need to do to find 𝐶𝐶 is substitute any other value of 𝑥𝑥 
into our equation.  
Substituting 𝑥𝑥 = 2:    ⇒ 6(4) + 5(2)− 2 = 𝐴𝐴(1)(5) + 𝐵𝐵(2)(5) + 𝐶𝐶(2)(1) 
      ⇒ 32 = 10 + 30 + 2𝐶𝐶 ∴ 𝐶𝐶 = −4 
 

So, we can conclude that 
6𝑥𝑥2+5𝑥𝑥−2

𝑥𝑥(𝑥𝑥−1)(2𝑥𝑥+1)
≡ 2

𝑥𝑥
+ 3

𝑥𝑥−1
+ −4

2𝑥𝑥+1
, and we are done. 

 
Repeated linear factors 
Whenever there is a repeated linear factor in the denominator and we wish to use partial fractions, 
we have to make a slight modification to our method.  
 

Take, for example, 
2𝑥𝑥2+2𝑥𝑥−18
𝑥𝑥(𝑥𝑥−3)2

. The factor (𝑥𝑥 − 3) is repeated in the denominator. When we split 

this fraction up, we must use an extra fraction to account for the repetition. Our partial fractions 
become: 
 

2𝑥𝑥2 + 2𝑥𝑥 − 18
𝑥𝑥(𝑥𝑥 − 3)2 ≡

𝐴𝐴
𝑥𝑥 +

𝐵𝐵
(𝑥𝑥 − 3) +

𝐶𝐶
(𝑥𝑥 − 3)2 

 
Once you have set up the above equality, you can proceed to using partial fractions as we did 
above. Here are two more examples of how we split up such fractions: 
 

10𝑥𝑥2 − 10𝑥𝑥 + 17
(2𝑥𝑥 + 1)(𝑥𝑥 − 3)2 ≡

𝐴𝐴
2𝑥𝑥 + 1 +

𝐵𝐵
(𝑥𝑥 − 3) +

𝐶𝐶
(𝑥𝑥 − 3)2 

 
2𝑥𝑥

(𝑥𝑥 + 2)2 ≡
𝐴𝐴

(𝑥𝑥 + 2) +
𝐵𝐵

(𝑥𝑥 + 2)2 

Remainder, 𝑜𝑜 

Algebraic methods Cheat Sheet  

(Addition) 

 
(Multiplication) 

 
(Division) 

 

(*) 

𝑥𝑥3 + 𝑥𝑥2 + 0𝑥𝑥 − 7 

This is known as the 
quotient, 𝑄𝑄(𝑥𝑥) 

𝐹𝐹(𝑥𝑥) 

𝐺𝐺(𝑥𝑥)  
𝑥𝑥 − 3  

𝑥𝑥3 − 3𝑥𝑥2 

4𝑥𝑥2 + 0𝑥𝑥 
4𝑥𝑥2 − 12𝑥𝑥 

12𝑥𝑥 − 7 
12𝑥𝑥 − 36 

29 

𝑥𝑥2 + 4𝑥𝑥 + 12 
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